Appendix 2.3

1. **Inverse Function Theorem** It may look impossible to remember the choice of

$$\delta = \min\left(k - f(g(k) - \varepsilon), f(g(k) + \varepsilon) - k\right) \tag{2}$$

in the proof of this Theorem. But a little Rough Work might help, starting by looking at *what we want*, namely $|g(y) - g(k)| < \varepsilon$ for y in an interval **centred** at k, i.e. $|y - k| < \delta$ for some $\delta > 0$. Open what we want out as

$$g(k) - \varepsilon < g(y) < g(k) + \varepsilon.$$

Apply f to all sides and, since f is strictly increasing, we get

$$f(g(k) - \varepsilon) < f(g(y)) < f(g(k) + \varepsilon).$$

Yet f and g are inverses so

$$f(g(k) - \varepsilon) < y < f(g(k) + \varepsilon)$$

Thus we have an interval of y which will satisfy $|g(y) - g(k)| < \varepsilon$. This interval contains k because $g(k) - \varepsilon < g(k) < g(k) + \varepsilon$ and thus, from applying f throughout,

$$f(g(k) - \varepsilon) < k < f(g(k) + \varepsilon).$$

Consider now the general situation of a closed interval [a, b] with a interior point $c \in (a, b) \subseteq [a, b]$. To get an interval centred on c inside [a, b] we measure the distances of c from the end points and choose the smallest, i.e. $d = \min(c - a, b - c)$. Then

$$c \in [c-d, c+d] \subseteq [a, b],$$

and we have an interval centred on c. In our case c = k, $a = f(g(k) - \varepsilon)$ and $b = f(g(k) + \varepsilon)$ when $d = \min(c - a, b - c)$ becomes (2).

2. The inverse is continuous at the end points. To show that the function g constructed in the Inverse Function Theorem is continuous at the *end points* of [c, d] was left to the students. Here I supply the details for the left hand end point

Proof To prove $\lim_{y\to c^+} g(y) = g(c)$ let $\varepsilon > 0$ be given. Choose $\delta = f(g(c) + \varepsilon) - c > 0$.

Assume $c < y < c + \delta = f(g(c) + \varepsilon)$. Apply g throughout, an increasing function, so

$$g(c) < g(y) < g(f(g(c) + \varepsilon))$$

= $(g \circ f) (g(c) + \varepsilon)$
= $g(c) + \varepsilon$,

since f and g are inverses of each other. Thus

$$c < y < c + \delta \implies |g(y) - g(c)| < \varepsilon,$$

that is, we have verified the definition of $\lim_{y\to c+}g(y)=g(c)\,.$

I leave it to the interested Student to show that $\lim_{y\to d-}g(y)=g(d)$. \blacksquare