Appendix 2.3

1. Inverse Function Theorem It may look impossible to remember the choice of

$$
\begin{equation*}
\delta=\min (k-f(g(k)-\varepsilon), f(g(k)+\varepsilon)-k) \tag{2}
\end{equation*}
$$

in the proof of this Theorem. But a little Rough Work might help, starting by looking at what we want, namely $|g(y)-g(k)|<\varepsilon$ for y in an interval centred at k, i.e. $|y-k|<\delta$ for some $\delta>0$. Open what we want out as

$$
g(k)-\varepsilon<g(y)<g(k)+\varepsilon .
$$

Apply f to all sides and, since f is strictly increasing, we get

$$
f(g(k)-\varepsilon)<f(g(y))<f(g(k)+\varepsilon) .
$$

Yet f and g are inverses so

$$
f(g(k)-\varepsilon)<y<f(g(k)+\varepsilon) .
$$

Thus we have an interval of y which will satisfy $|g(y)-g(k)|<\varepsilon$. This interval contains k because $g(k)-\varepsilon<g(k)<g(k)+\varepsilon$ and thus, from applying f throughout,

$$
f(g(k)-\varepsilon)<k<f(g(k)+\varepsilon) .
$$

Consider now the general situation of a closed interval $[a, b]$ with a interior point $c \in(a, b) \subseteq[a, b]$. To get an interval centred on c inside $[a, b]$ we measure the distances of c from the end points and choose the smallest, i.e. $d=\min (c-a, b-c)$. Then

$$
c \in[c-d, c+d] \subseteq[a, b],
$$

and we have an interval centred on c. In our case $c=k, a=f(g(k)-\varepsilon)$ and $b=f(g(k)+\varepsilon)$ when $d=\min (c-a, b-c)$ becomes (2).
2. The inverse is continuous at the end points. To show that the function g constructed in the Inverse Function Theorem is continuous at the end points of $[c, d]$ was left to the students. Here I supply the details for the left hand end point

Proof To prove $\lim _{y \rightarrow c+} g(y)=g(c)$ let $\varepsilon>0$ be given. Choose $\delta=$ $f(g(c)+\varepsilon)-c>0$.

Assume $c<y<c+\delta=f(g(c)+\varepsilon)$. Apply g throughout, an increasing function, so

$$
\begin{aligned}
g(c)<g(y) & <g(f(g(c)+\varepsilon)) \\
& =(g \circ f)(g(c)+\varepsilon) \\
& =g(c)+\varepsilon,
\end{aligned}
$$

since f and g are inverses of each other. Thus

$$
c<y<c+\delta \Longrightarrow|g(y)-g(c)|<\varepsilon
$$

that is, we have verified the definition of $\lim _{y \rightarrow c+} g(y)=g(c)$.
I leave it to the interested Student to show that $\lim _{y \rightarrow d-} g(y)=g(d)$

